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Abstract

The benefits of applying optimization to computational models are well known, but their range of widespread
application to date has been limited. This work attempts to extend the disciplinary areas to which optimization
algorithms may be readily applied through the development and application of advanced optimization strategies
capable of handling the computational difficulties associated with complex simulation codes. Towards this goal, a
flexible software framework is under continued development for the application of optimization techniques (and other
iterative computational methods) to broad classes of engineering applications, including those with high
computational expense and nonsmooth, nonconvex design space features. Object-oriented software design with C++
has been adopted as a tool to provide a flexible, extensible, and robust multidisciplinary toolkit that establishes the
protocol for wrapping parameter optimization around computationally-intensive simulations. The object-oriented
approach is well-suited for handling this large software undertaking, in which a wide assortment of optimization
algorithms, approximation techniques, and hybridized strategies must be generically interfaced with broad classes of
analysis capabilities. Demonstrations of optimization using the software are presented in fluid mechanics, heat
transfer, nonlinear solid mechanics, and structural dynamics. Optimal results are presented along with technical
lessons that were learned in the optimization process.

Introduction

Computational methods developed in fluid mechanics, structural dynamics, heat transfer, nonlinear large-
deformation mechanics, manufacturing and material processes, and many other fields of engineering can be an
enormous aid to understanding the complex physical systems they simulate. Often, it is desired to utilize these
simulations as virtual prototypes to improve or optimize the design of a particular system. This effort seeks to
enhance the utility of this broad class of computational methods by providing them with a general optimization
capability and enabling their use as design tools, so that simulations may be used not just for single-point predictions,
but also for improving system performance in an automated fashion. System performance objectives can be
formulated to minimize weight or defects or to maximize performance, reliability, throughput, reconfigurability,
agility, or design robustness (insensitivity to off-nominal parameter values). A systematic, rapid method of
determining these optimal solutions will lead to better designs and improved system performance and will reduce
dependence on prototypes and testing, which will shorten the design cycle and reduce development costs.
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Towards these ends, we have targeted the needs of a broad class of computational methods in order to provide a
general optimization capability. Much work to date in the optimization community has focused on applying either
gradient-based techniques to smooth, convex, potentially expensive problems (e.g., (Kamat 1993)) or global
techniques to nonconvex but inexpensive problems (e.g., (Törn and Zilinskas 1989)). When the difficulties of high
computational expense and nonsmooth, nonconvex design spaces are coupled together, advanced strategies are
required. Moreover, since the challenges of each application are frequently very different, generality and flexibility of
the advanced strategies are key concerns. The following list itemizes the primary challenges.

Technical Issues. The coupling of optimization with complex computational methods is difficult, and optimization
algorithms often fail to converge efficiently, if at all. The difficulties arise from the following traits, shared by many
computational methods:
1. The time required to complete a single function evaluation with one parameter set is large. Hence, minimization of

the number of function evaluations is vital.
2. Analytic derivatives (with respect to the parameters) of the objective and constraint functions are frequently

unavailable. Hence, sensitivity-based optimization methods depend upon numerically generated gradients which
require additional function evaluations for each scalar parameter.

3. Convergence tolerances in embedded iteration schemes introduce uncertainty (noise) in the function evaluation
response surface, which can result in inaccurate numerical gradients.

4. The parameters may be either continuous or discrete, or a combination of the two.
5. The objective and constraint functions may not be smooth or well-behaved; i.e., the response surfaces can be

severely nonlinear, discontinuous, or even undefined in some regions of the parameter space. The existence of sev-
eral local extrema (multi-modality) is common.

6. Each function evaluation may require an “initial guess.” Function evaluation dependence on the initial guess can
cause additional uncertainty in the response surface. Moreover, a solution may not be attainable for an inadequate
initial guess, which can restrict the size of the allowable parameter changes.

Addressing these challenges with robust and efficient optimization strategies extends the range of applications where
the benefits of optimal solutions can be realized.

Technical Approach. To be effective in addressing these technical issues, one must minimize the computational
expense associated with repeated function evaluations (efficiency) and maximize the likelihood of successful
navigation to the desired optimum (robustness). The key technology developments needed to achieve these goals are
fundamental algorithm research, hybrid optimization algorithms, function approximation strategies, parallel
processing, and automatic differentiation. Research in hybridization, approximation, and parallel processing is
detailed in a separate paper (Eldred et al. 1996).

In this paper, the software infrastructure design and demonstrations of its use in four engineering mechanics
applications will be presented. The generation of optimal solutions for the four applications involves mating existing,
stand-alone optimizers (nonlinear programming, genetic algorithms, pattern search) with one or more engineering
simulations. Thus, the focus of this paper is on 1) how generic interfacing of iteration with simulation is performed,
2) what application-specific techniques are useful in enabling reliable, efficient optimization studies, and 3) how
existing techniques perform and what their weaknesses are when interfacing with complex engineering simulations.
The results computed serve as benchmarks for comparison of advanced strategy performance (Eldred et al. 1996),
and the lessons learned have helped direct the current research focus areas.

Software Design

The DAKOTA (Design Analysis Kit for OpTimizAtion) toolkit utilizes object-oriented design with C++
(Stroustrup 1991) to achieve a flexible, extensible interface between analysis codes and iteration methods. The scope
of iteration methods which may be included in the system currently includes optimization, nondeterministic
simulation, and parameter study methods. Likewise, there is breadth in the analysis codes which may be interfaced.
Currently, simulator programs in the disciplines of nonlinear solid mechanics, structural dynamics, fluid mechanics,
and heat transfer have been accessed. The system also provides a platform for research and development of advanced
iteration strategies.

Accomplishing the interface between analysis codes and iteration methods in a sufficiently general manner poses
a difficult software design problem. These conceptual design issues are being resolved through the use of object-
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oriented programming techniques. In mating an iteration method with an analysis code, generic interfaces have been
built such that the individual specifics of each iterator and each analysis code are hidden. In this way, different iterator
methods may be easily interchanged and different simulator programs may be quickly substituted without affecting
the internal operation of the software. This isolation of complexity through the development of generic interfaces is a
cornerstone of object-oriented design (the concept of “one interface, many methods”), and is required for the desired
generality and flexibility of the advanced strategy developments (e.g., hybridization, function approximation).

The Application Interface (Figure 1) isolates application specifics from an iterator method. By providing a
generic interface for the mapping of a set of parameters (e.g., the vector of design variables “OptParameter”) into a
set of responses (e.g., an objective function, constraints, and sensitivities in “OptResponse”), the specific
complexities of a given problem are hidden from the iterator method. Housed within the Application Interface are
three pieces of software. The input filter abstraction (“IFilter”) provides a communication link which transforms the
set of input parameters (OptParameter) into input files for the simulator program. The simulator program reads the
input files and generates results in the form of output files or databases (a driver program/script is optional and is used
to accomplish nontrivial command syntax and/or progress monitoring for adaptive simulation strategies). Finally, the
output filter abstraction (“OFilter”) provides another communication link through the recovery of data from the
output files and the computation of the desired response data set (OptResponse). The following descriptions identify
the actual C++ classes used by DAKOTA:

Optimizer:  This class represents the optimization technique to be used. Many optimizers may be derived from this
class, enabling easy selection of a particular optimizer as a problem may require. TheOptimizer  base class is de-
rived from a more generalIterator  class.

ApplicationInterface:  This abstraction defines the interface between an Optimizer and a simulator program. It en-
compasses the specific details of a given engineering application. Everything external to this interface is generic
and independent of the problem being solved. An ApplicationInterface object willuse both an IFilter object and
an OFilter object to accomplish its task.

IOFilter:  A utility class abstraction used by the ApplicationInterface class to provide communication links between
the generic data formats used by the Optimizer and the specific input and output formats of a particular simulator
program. The input and output operations are logically similar but separable enough to warrant two derived class-
es (IFilter and OFilter).

OptParameter: A vector of floating point values representing the parameters being optimized.

OptResponse: An abstraction for storing the desired output data set of a simulation. OptResponse contains values for
the objective function, constraints, and (in some applications) sensitivities.

Object-oriented techniques such as inheritance and polymorphism are being exploited so that the abstract objects
are easy to use and sufficiently generic to encompass a wide variety of problems. Having properly designed the inter-
face, the mapping of parameters to responses shown in Figure 1 provides generic information to the optimizer, and
the application and implementation specifics are hidden. The result is a flexible, reusable, and robust multi-disciplin-
ary toolkit that establishes the protocol for wrapping parameter optimization around computationally-intensive finite
element analyses.

Optimizer iterators are part of a larger “iterator” hierarchy in the DAKOTA system. In addition to optimization
algorithms, the DAKOTA system is designed to accommodate nondeterministic simulation and parameter study
iterators. Other classes of iterator methods may be added as they are envisioned, which “leverages” the utility of the
Application Interface development.The inheritance hierarchy of these iterators is shown in Figure 2. Inheritance
enables direct hierarchical classification of iterators and exploits their commonality by limiting the individual coding
which must be done to only those features which make each iterator unique.

Several optimization algorithm libraries and strategies are inherited from theOptimizer  base class. DOT
(Vanderplaats Research and Development 1995), NPSOL (Gill et al. 1986), OPT++ (Meza 1994), and SGOPT (Hart
1994, Hart 1995) have been incorporated in this framework as libraries ofstand-alone optimizers. Additionally, the
“Hybrid” and “SAO” optimization strategies arecombination strategies which have been conceptualized. In the
former, two or more stand-alone optimizers are combined in a hybrid strategy. For example, a coarse-grain genetic
algorithm might initially be used to locate promising design space regions, followed by the use of nonlinear
programming to converge efficiently on local optima. Effective switching metrics are a key concern. In the latter, a
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stand-alone optimizer is interfaced with a separate function approximation toolbox in the setting of sequential
approximate optimization (SAO, see (Haftka et al. 1990)). Here, the accuracy and expense of the approximate
subproblems, the mechanisms by which the approximations are updated, and the mechanisms of move limit
enforcement are key concerns.

Software development work is ongoing. In addition to extension of iterator capabilities and incorporation of
additional simulator programs through input and output filter development, general software infrastructure extensions
are being implemented in the areas of active set strategies, support of analytic sensitivities, advanced problem
specification and system control, and general restart capabilities.

Applications and Results

In application work, the targeted technology areas are nonlinear large-deformation solid mechanics, heat transfer,
fluid mechanics, and structural dynamics.

Nonlinear Mechanics: Shape Optimization of a Hazardous Material Transportation Cask

Problem Description. Design of hazardous material transportation casks is an area where numerical optimization
can have a large and immediate impact (Harding et al. 1995). These casks are used to transport spent nuclear fuel,
high-level waste, and hazardous material. Since they transport such materials, their design and certification must
adhere to strict Nuclear Regulatory Commission regulations. A typical transportation cask is shown in Figure 3.
There are several components that constitute a typical cask, including impact limiters, containment vessel, shielding,
and closure mechanisms, whose designs could be numerically optimized.

In the past, typically, each component was designed separately based on its driving constraint and the expertise of
the designer, the components were assembled, and then modified until all of the design criteria were met. This
approach neglects the fact that, in addition to its primary function, each component can also have secondary purposes.
For example, an impact limiter’s primary purpose is to act as an energy absorber and protect the contents of the
package, but it can also act as a heat dissipater or an insulator. However, designing the component to maximize its
performance with respect to both objectives severely convolutes the problem. Numerically-based optimization
schemes can readily attack such problems in an efficient manner. Thus, since the design of these packages involves a
complex coupling of structural, thermal and radiation shielding analyses and must follow very strict design
constraints, numerical optimization provides the potential for more efficient and robust container designs.

The container weight is to be minimized with respect to shape design variables, subject to design constraints on
the cask performance in fire and impact accident simulations. The shape of the cask has been parameterized with
respect to 6 design variables (x1 - x6) which control the thicknesses of 3 overpack layers in the radial and axial
directions (Figure 4). Lower and upper bounds for each of these 6 design variables are 0.1 inch and 20 inches,
respectively. The finite element model in Figure 4 shows a simplified geometry over that of Figure 3 in which the
stainless steel overpack closure and the locking mechanisms are neglected. The 3 overpack layers consist of 1 layer of

aluminum wire mesh impact limiter (density = 448.5 kg/m3) sandwiched between 2 layers of ceramic cloth thermal

insulation (density = 801.0 kg/m3). The optimizer competes these overpack layers against each other based on
relative weight and effectiveness in satisfying the certification constraints. Three separate accident conditions are of
concern, each supplying a design constraint on the optimization. In the first accident scenario, a 500 kg steel plate is
dropped from a height of 9 m onto the end of the cask which is supported on a rigid foundation (the “end-on” impact;
Figure 4). The nonlinear mechanics code PRONTO2D (Taylor and Flanagan 1986) is used to determine stress
histories for a given cask design, and for the end-on impact, a design constraint enforces an allowable of 23,000 psi
on the maximum axial stress (σyy) in the inner container. Second, for the same plate impact in a side-on configuration
(Figure 5), a design constraint enforces an allowable of 8,440 psi on the maximum inner container axial stress (σyy).
These stress allowables were obtained through calibration to a highly refined model, in which a detailed mesh
captured actual threaded seal deformation. Lastly, for a 30 minute 800O C fire, COYOTE II (Gartling and Hogan
1994) is used to generate nodal temperature histories, and a design constraint enforces that the maximum inner seal
temperature does not exceed 232O C.

An input filter program was generated to translate the shape design parameters into information used by the
PRONTO2D and COYOTE II analysis codes. This requires preprocessing of parameterized template input decks
(with APREPRO (Sjaardema 1992)) and automatic mesh generation (with FASTQ (Blacker 1988)). An output filter
program computes the weight, reads the stress and temperature time histories (using BLOT (Gilkey and Glick 1989)),
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locates the maximum stresses and temperatures, computes constraint values, and returns the objective and constraint
function values to the optimizer.

To maximize efficiency with respect to simulation duration while still maintaining the ability to reliably capture
the complete impact event, an adaptive termination time strategy was developed and implemented for the impact
analyses. This development was motivated by the observation that, whenever event durations vary broadly with
design variables, a single selected termination time will invariably be either too long, wasting CPU cycles in
continuing the simulation past the event of interest, or too short, terminating the simulation before the peak response
is reached and causing inaccurate objective and constraint function evaluations. To avoid the more serious
ramifications of the second scenario (underestimation of a critical response), it is common to sacrifice efficiency and
adopt a best guess at a sufficiently long simulation duration. Of course, this approach can fail if the variance of event
duration over the design space is underestimated; and in fact, an optimizer will naturally seek out those regions of the
design space in which the simulation duration is insufficient if the truncation of analyses leads to lower objective
functions or more feasible constraint values. A better approach is to adaptively control simulation duration through
the monitoring of simulation progress. In impact analyses, event completion can be determined by monitoring the
kinetic energy (KE) time history for rebound (an increase in KE following the near-zero minimum state), after which
the simulation can be terminated with a Unix kill process command. The KE monitoring and process kill is
accomplished with a Unix background process which is launched from the PRONTO analysis driver (see Figure 1)
and which cycles with a sleep-delay. This strategy was highly effective in conserving compute time while
guaranteeing capture of the peak stress.

Optimization Results. Nonsmoothness of response variations with respect to design variables is troublesome for
nonlinear programming techniques, especially when sensitivities are obtained by finite difference. For the end-on
vertical impact analysis, continuous improvements in analysis, including model refinement, filtering of stress time
histories, increases in platform precision (from single to double precision FORTRAN), and modifications in contact
line treatment have been necessary in order to minimize nonsmoothness. Figure 6 shows sequential improvement in
design space smoothness for variation in maximum axial stress (σyy) with respect to fine changes in vertical impact
limiter thickness (design variable x5), from unfiltered low-precision runs (plot point ‘o’) to filtered low-precision runs
(plot point ‘*’) to filtered high-precision runs on a refined model (plot point ‘x’) to filtered high-precision runs on a
refined model with contact lines node-locked at corners (plot point ‘+’). This last modeling improvement was needed
to remove contact indeterminacies at mesh corners, since these indeterminacies were exciting hourglassing
instabilities in the PRONTO stress histories. Clearly, the final response variations provide a far more navigable
surface than the initial variations. For the thermal analysis, similar refinements have been required, as shown in
Figure 7. Mesh refinements, time step size decreases, and the tightening of iterative solver convergence tolerances
were required to progress from the initial stair-stepped curve through the sinusoidal curve to the final, relatively
smooth, response variation. These nonsmoothness reductions in the impact and thermal analyses were required to
allow for effective design space navigation with gradient-based optimizers.

With the bulk of the troublesome nonsmoothness removed, optimization studies have been successful in
minimizing the cask weight with respect to the end-on constraint, the thermal constraint, and all three constraints in
the combined problem (no meaningful stand-alone weight minimization problem exists for the side-on impact model
since x4, x5, and x6 are not defined; see Figure 5). Minimum weights and constraint values are shown in Table 1
(active constraints are underlined), the associated design variable values are shown in Table 2 (variables at or near
their bounds are underlined), and the optimal shapes are graphically compared to the geometry of a successful
experimental prototype in Figure 8. In Table 1, as would be expected, the thermal and end-on optimum designs are
active on their respective constraints. The combined optimum is active on the thermal and end-on constraints, and
inactive on the side-on constraint. In Table 2, it can be seen that the end-on constraint primarily drives axial stroke
length (x4, x5, and x6) and radial wire mesh thickness (x2), and the thermal constraint primarily drives radial thickness
of the thermal shields (x1 and x3). In the combined design, it can further be seen that the outer thermal shield is
redundant (x3 and x6 go to their 0.1 inch lower bounds). The fact that the necessary thickness of thermal shield
belongs in the innermost layer is intuitive, since the thermal shield is heavier than the wire mesh and gains no obvious
thermal advantage in being positioned further out radially. The wire mesh, on the other hand, is lighter, pays a smaller
weight penalty for being the external layer, and gains a mechanical advantage in being further separated from the
centroidal axis. The 94 lb. combined optimum design is a substantial improvement over both the successful
experimental prototype containing 150 lbs. of overpack (Figure 8) and the previously published best design of 184
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lbs. (Witkowski et al. 1994).

Technical Lessons Learned. The application of optimization to this problem led to several observations:
• Shape optimization with automatic remeshing is a tricky business, particularly when design variables are

inclined to seek their lower bounds. Poor element aspect ratios can promote numerical instabilities in nonlinear
solvers, which must ultimately be addressed with increased mesh density. That is, as a shape design variable
approaches its lower bound, the characteristic element size in the region defined by the shape variable must
decrease in order to accurately compute the desired responses. This can dramatically increase the compute time,
both directly, through the increase in total degrees of freedom, and indirectly, through the determination of stable
time step sizes.

• An effective balance of nonsmoothness vs. CPU has to be determined in many engineering simulations. One
must have navigable objective and constraint function surfaces, but must also have tractable CPU usage in the
simulations. Clearly, these are competing factors, since refining the modeling controls and mesh density invari-
ably increases the CPU usage of a simulation. Furthermore, the level of required smoothness may be a function
of the type of optimizer being used. This fact is further born out in the following heat transfer application.

• Adaptive simulation termination strategies increase both the efficiency and the robustness of optimization stud-
ies, by conserving compute time while still guaranteeing capture of the peak responses of interest.

Heat Transfer: Determination of Worst Case Fire Environments

Problem Description. In thermal science simulations, parameter sets are sought which produce worst-case
credible fire environment(s) for which structures and systems (such as aircraft, weapons, or petrochemical processing
plants) must be designed. These inverse problems can be solved within an optimization framework. As a
demonstration, optimization techniques have been applied to determine the vulnerability of a safing device to a
“smart fire” (Romero et al. 1995). The optimization parameters consist of the location and diameter of a circular spot
fire impinging on the device. The temperature of the fire is constant, though the heat flux it imparts to the device
varies in time and space coupled to the response of the device. Function evaluations involved transient simulations
using a nonlinear QTRAN (PDA Engineering 1993) heat transfer model with radiative and conductive heating. The
finite element model used in the analysis is shown with typical temperature contours in Figure 9. Each simulation
required 20 CPU minutes to solve (at tight error tolerance levels, see Figure 13) on a node of an IBM SP2
workstation.

The components of interest must work together to prevent the device from operating except under the intended
conditions. It is a weaklink/stronglink design: the weaklink is designed to fail under adverse conditions, which
renders a potential stronglink failure incapable of harm. The weaklink is a Mylar-and-foil capacitor winding mounted
on the outside of the safing device and the stronglink is a stainless steel plate mounted inside a cavity and offset right
of center as shown in Figure 9. The time difference between failure of the stronglink and failure of the weaklink is the
safety margin for the device and varies with the fire exposure pattern on the device surface. Hence, to validate the
design of the safing system, the worst-case fire exposure pattern is sought by using optimization to minimize this
safety margin for selective exposure to a 1000O C black body heat source.

 Typical critical node temperature histories are shown in Figure 10 for a 20 hour fire exposure, where the critical
node of a link is the one which reaches its failure temperature earliest. The safety margin shown graphically is the
objective function that the optimizer minimizes with respect to the design parameters of fire spot-radius (r) and fire
center location (x), subject to simple bounds (0.5≤ r ≤ 5.8, -2.9≤ x ≤ 2.9).

An input filter program was generated to translate the optimization parameters into information used by the
QTRAN analysis code. Node, element, and surface information are obtained from the PATRAN (PDA Engineering
1988) neutral file description of the finite element model. The heating load applied to each exposed element is then
calculated, and this load is assigned to the corresponding nodes of the mesh. QTRAN is executed to determine the
temperature histories of monitored nodes for up to a 200 minute exposure to these heating conditions. The QTRAN
simulation rarely runs for the full 200 minute duration because of the use of an adaptive termination strategy. This
strategy uses a background script to monitor the simulation progress periodically and to execute a kill command once
failures have been captured for both links. This procedure is used to reduce the computational expense of the
simulations. Once the QTRAN simulation is completed, an output filter program reads the nodal temperature
histories and calculates a failure time for each node. In this calculation, interpolation between time step values is used
to accurately estimate captured link failures, and if the analysis ran the full 200 minute duration without capturing
failures for both links, then a linear extrapolation in time is used to approximate the uncaptured link failures. The
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earliest weaklink nodal failure time is then subtracted from the earliest stronglink nodal failure time, and this
objective function value is returned to the optimizer.

Optimization Results. This application was challenging from an optimization perspective due to the
nonsmoothness and nonconvexity of the design space. In Figures 11 and 12, one-dimensional parameter studies show
evidence of multimodality (Figure 12) and of slope-discontinuity at the minimum (Figures 11 and 12). The slope-
discontinuity in the figures is caused by switching of the critical weaklink node between geometric extremes. Figure
11 shows negative curvature near the discontinuity (nonconvexity), whereas the discontinuity in Figure 12 is more
difficult to discern since the curvature is positive near the discontinuity.

These two parameter studies also provide insight into the mechanics of the problem. In Figure 11, the offset of
the lowest safety margin from x=0 (the center of the device) backs up engineering intuition in that the stronglink is
also offset right of center. That is, a fire centered roughly over the stronglink causes a lower safety margin. Figure 12
shows a less intuitive result, in which it is evident that the lowest safety margin is not achieved with either a large fire
or a small fire. Rather, there exists an insidious, medium sized fire which is not so small that the heating rate is
insufficient and which is not so large that it prevents selective heating.

Figure 13 is a detail of Figure 11 and shows evidence of small-scale nonsmoothness, which was reduced through
the tightening of QTRAN convergence tolerances at the cost of approximately an order of magnitude greater
computational time per analysis. EPSIT and EPSIT2 are absolute convergence tolerances in degrees which govern
time step completion and node inclusion in nonlinear iterations, respectively. The additional computational expense
per analysis was warranted in this case since none of the nonlinear programming algorithms could successfully
navigate the design space without reducing the nonsmoothness (even with large finite difference step sizes).

Several nonlinear programming optimization packages were employed for the solution of this problem, including
DOT, NPSOL, and OPT++. In general, the Newton-based optimizers (NPSOL’s sequential quadratic programming
algorithm, DOT’s BFGS quasi-Newton method, and OPT++’s quasi-Newton methods) performed poorly due to
inaccuracy and ill-conditioning in the Hessian approximation caused both by the nonconvexity of the design space
and by the relatively large finite difference step sizes needed to overcome the small-scale nonsmoothness. Conjugate
gradient (CG) methods (DOT’s Fletcher-Reeves CG and OPT++’s Polak-Ribiere CG) were much more successful.
Furthermore, choice of finite difference step size (FDSS) for computation of gradients proved to be important. Table

3 shows the results for CG optimizers with varying FDSS and with EPSIT=10-2 and EPSIT2=10-4 (see Figure 13 for
effect of EPSIT tolerances). An asterisk (*) in the function evaluations column indicates that the optimization
terminated prematurely due to a search direction that failed a descent direction test.

The first four rows of Table 3 illustrate the effect of FDSS on the optimization: FDSS should be as small as
possible to allow for effective convergence to a minimum (0.1% is better than 1% which is better than 4% since the
gradients are less accurate locally for larger FDSS), but still large enough that small-scale nonsmoothness does not
cause erroneous gradients (0.01% is too small; the optimizer cannot successfully navigate the design space since the
FDSS is on the order of the design space noise). The last five rows show that DOT’s CG optimizer was more robust
and more efficient than OPT++’s CG optimizer, through the fact that DOT was successful from 3 different starting
points and OPT++ from only one, and through the lower number of function evaluations that were required. The chief
cause for these differences was not the version of CG being used (in fact, Polak-Ribiere is generally regarded to be
superior to Fletcher-Reeves (Coleman and Li 1990)), but rather was DOT’s robust line search routine. OPT++’s line
search routine was tuned for efficiency in smooth applications and was overly aggressive in this application; the
OPT++ line search library has since been extended to include more robust routines for nonsmooth applications.

To achieve the best answer possible, the QTRAN convergence tolerances were tightened 2 additional orders of

magnitude (EPSIT=10-4, EPSIT2=10-6) and the FDSS was reduced to 0.1%. DOT’s Fletcher-Reeves CG algorithm
was used to obtain the lowest objective function value of 2.5309 minutes (r=1.6204, x=0.78205) which, when
compared to stronglink and weaklink failure times of 62.743 and 60.212 minutes respectively, corresponds to a safety
margin of just 4%. The 2.5 minute safety margin is an order of magnitude lower than anticipated prior to the study,
meaning that the safing device has been shown to be much more vulnerable than was expected. With this relatively
low safety margin, it becomes crucial to assess the effects of nondeterminism in the model, which, in the future, can
be accomplished with minimal additional effort by “instantiating” an iterator from theNondeterministic base class
(see Figure 2). Thus, optimization has successfully solved the difficult problem of worst-case design safety and
suggests that design improvements may be warranted.

Pattern search optimizers from the SGOPT package have also been tested on this application. Preliminary results
have shown that the same minimum safety margin of 2.5 minutes can be reliably achieved with pattern search.
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Furthermore, since pattern search is less sensitive to small-scale nonsmoothness than gradient-based techniques,
looser EPSIT tolerances can be employed in the fire simulations which lowers the individual simulation expense
considerably. Initial studies have shown that, even though pattern search usually requires more function evaluations
than gradient-based optimization, the lower individual simulation expense more than compensates, making the
overall computational expense of the pattern search optimization lower than that of the gradient-based optimization
(see (Eldred 1996) for a more detailed discussion). Pattern search is, however, susceptible to the “curse of
dimensionality,” meaning that the method becomes less competitive in efficiency as the number of design variables
increases.

Technical Lessons Learned. The application of optimization to this problem led to the following observations:
• When using finite difference gradients in applications with nonsmoothness, an effective finite difference step size

is not easily determined. It must be as small as possible to allow for efficient convergence, but still large enough
to not be adversely affected by small-scale nonsmoothness.

• Hessian ill-conditioning can be a problem in nonconvex design spaces, causing poor performance in many New-
ton-based methods. Trust region methods have the potential to overcome this difficulty while maintaining the
theoretical strength of second-order optimizers.

• As in the previous application, when computing transient responses for events of unknown duration, increased
optimization efficiency and robustness (compute time is conserved, desired response capture is guaranteed) can
be achieved with use of an adaptive simulation termination strategy.

• Analysis code convergence tolerances can have a substantial effect on the local nonsmoothness in the design
space. When using a gradient-based optimizer, it may be necessary to pay the increased computational expense
to employ tight tolerances, so that the optimizer can navigate the design space effectively.

• Gradient-based optimizers put substantial faith in the accuracy of the computed search direction, and in nons-
mooth applications, this level of faith may not be justified since the gradients used to calculate the search direc-
tion have questionable accuracy. Pattern search optimizers do not confine themselves to a single search direction,
but rather search multiple directions simultaneously. As a result, they can be more robust in nonsmooth applica-
tions. Moreover, efficiency can be comparable when the number of design variables is small.

Fluid Mechanics: Coating Flow Die Design

Problem Description. The manufacture of polymeric thin-film coatings is an expensive process, requiring high-
maintenance, close-tolerance tooling which must be frequently replaced. In premetered processes such as slide, slot,
and curtain coating flows (the primary manufacturing methods for film products like video tapes and color
photographic film), liquids are distributed uniformly in the transverse direction by chamber-slot dies. Dies must be
carefully designed and machined with tight tolerances to ensure uniform flow at the exit (transverse nonuniformity
must fall within a few percent). The die-fabrication process is costly in both dollars and time, but is necessary to
maximize production throughput of high-quality thin films at the lowest cost. A typical thin-film die is illustrated in
Figure 14. Polymer is pumped into a chamber through a feed pipe, and is then extruded through a slot. Typical slot
dimensions are 5’ wide by .01” high. The output flow profile is typically laminar and the fluid is assumed to be
Newtonian. The flow is highly sensitive to a number of design parameters, including geometrical parameters (e.g.,
slot dimensions, chamber shape and size), fluid properties (e.g., liquid viscosity and density), and process conditions
(e.g., volumetric flowrate).

The goal of this study is to find the optimum combination of die geometry parameters which minimizes
nonuniformities in the output flow profile for a given set of fluid properties and operating conditions. The objective
function of outflow plane nonuniformity is computed by integrating the velocity profile over the outflow plane and is
formulated as the percent of coating material across the slot width whose deviation is greater than 1% from the mean
velocity. “Perfect” uniformity (0% nonuniformity) is not achievable as the problem is formulated due to the “no-slip”
condition at the flow boundaries (i.e. walls of the die). That is, some portion of the coating width will always exceed
1% deviation due to the fact that the coating velocity profile must ramp up from zero at the wall. The die design
geometry shown in Figure 14 is parameterized using six design variables that vary the pre-determined sensitive
dimensions of the die. These dimensions are slot length Ls, slot height Hs, slot entrance angleα, chamber length Lc,
chamber height Hc, and feed-channel height Hf. Slot width W is fixed at 12.7 cm. Constraints on the problem include
pump pressure range, an upper bound on the average residence time, and a tolerance band on process temperature.
Higher pump pressures generally cause larger flowrate or velocity fluctuations in the feed channel, and higher power
(i.e. $) requirements. More importantly, excessive pump pressure can cause deflection of the slot walls, which in turn
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results in variation of the slot gap height and thus an undesirable increase in flow nonuniformity at the slot exit. In
temperature-sensitive coating flow applications (e.g. hot melt extrusion), process temperature must be maintained
within a tolerance band to avoid changes to the fluid properties and to the mechanical stability of the die. In low
viscosity applications, temperature is less important since operations are normally carried out at room temperature.

There are two stages in a premetered coating flow. The first stage involves pumping coating liquid into a die
distributor (or distributors when simultaneous multilayer coating flows are carried out) and distributing the coating
liquid uniformly across the die width. In this stage, flow boundaries are of fixed type, i.e. no free boundaries are
present. Accordingly, flow simulation is straightforward. The second stage involves transferring the coating liquid
from the coating head (i.e. die) to the fast-moving flexible substrate (or web). In this stage, not only are free surfaces
(i.e. air/liquid interfaces) present, but the flow also contains static and dynamic contact lines. Here, flow simulation is
much more challenging. At present, no commercial code can satisfactorily simulate this latter stage of premetered
coating flows. To fill this void, researchers at Sandia National Laboratories are developing specialized computer
codes that can efficiently simulate the second stage of a variety of coating flows. For the present study, which
involved three-dimensional flow with fixed boundaries, a commercial code based on the finite element method,
namely FIDAP (Fluid Dynamics International 1993), was employed.

An input filter program was generated to translate the die geometry parameters into information used by the
FIDAP analysis code. This requires preprocessing of parameterized template input decks with APREPRO. Following
the FIDAP analysis, an output filter program reads the velocity and pressure profiles from the FIDAP output,
integrates the velocity data in calculating the objective function, computes the constraint values based on residence
time and maximum pressure calculations, and returns the objective function and constraint values to the optimizer.

Optimization Results and Technical Lessons Learned. As discussed in the earlier applications, nonsmoothness
of response surfaces is critical not only for a gradient-based optimization scheme to be efficient, but for it to be viable
at all. In this application, two different finite element models were used to investigate the response surface (non-
uniformity in the outflow plane versus geometric parameters) smoothness issue. The first model (the “coarse model”)
contained 540 elements, whereas, the second model (the “fine model”) had 980 elements. Both models provided
navigable surfaces; however, the coarse model had kinks in its surfaces which were nonexistent using the fine model.
Although the fine model had more than twice the computational burden, it was necessary to pay the increased
computational expense to insure a smoother surface for the optimizer to navigate. The initial geometry and finite
element mesh for the fine model are shown in Figure 15.

In the case study presented here, low viscosity coating liquids typically used in precision premetered coating pro-
cesses are of interest. Specifically, fluid viscosity and density were chosen to be 15 cP and 1000 kg/m3 respectively,

volumetric flowrate per unit slot width was set to be 1.5x10-4 m2/s, and a characteristic length scale was chosen to be
10-3 m. With these conditions, the resultant Reynolds number is 10. Constraint allowables were set at 2100 for nondi-
mensional maximum pressure (dimensional gauge pressure = 0.7 psi) and 325 for nondimensional average residence
time (dimensional time = 2.2 sec). These values were chosen somewhat arbitrarily based on the nominal design to
prevent overly large design changes. More realistic process allowables are needed and will be obtained from industry.

DOT’s modified method of feasible directions optimizer was used to successfully optimize the die geometry and
reduce the nonuniformity from 16.5% to 3.2%. The final geometry is shown in Figure 16. Initial and final die dimen-
sions and constraint values are shown in Table 4 (those dimensions which were driven to their upper or lower bounds
are indicated with a ‘*’). Comparison between initial and final geometries shows that the optimized geometry is about
twice as large as at the initial. As expected, the slot height was reduced to its lower bound, thereby causing the maxi-
mum pressure to increase to 1832 (dimensional pressure = 0.6 psi). Since neither of the constraints on maximum
pressure or average residence time were active, the optimum design computed is not a direct function of the allow-
ables chosen for these parameters. This low pressure optimal solution is typical of low-viscosity coatings. It is
expected that the maximum pressures will be considerably greater for high-viscosity coating applications (e.g., adhe-
sive coatings, hot-melt extrusion).

Although numerical optimization has proved to be valuable in improving die design for low viscosity coating
flows, it is evident that this is only part of a general die design effort. Continuation of this work will involve
investigation of additional coating materials, primarily high viscosity coatings, which will likely require more careful
treatment since the operating constraints will be more important in the design. Also, instead of parameterizing with
only a slot entrance angle, a more complex parameterization of the die chamber will be used to describe a tear-drop
chamber shape. Lastly, efforts are underway to incorporate analytical sensitivity capability within the FIDAP analysis
code so that optimization efficiency can be comparatively evaluated for analytical gradient-based, finite difference
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gradient-based, and pattern search approaches.

Structural Dynamics: Discrete Optimization of Vibration Isolation Platform

Problem Description. Vibration isolation systems are widely used to protect sensitive devices from vibrations
produced in their environment. Typical examples include isolating delicate laboratory experiments from floor-borne
vibrations, preventing transmission of vibrations in satellite structures from rotating machinery (e.g., cryo-coolers) to
communication antennas or scientific detectors, or isolating a car body or airplane frame from engine vibrations.

Isolation is achieved with the use of passive or active compliant connections between the source of the vibrations
and the device to be protected. The classical approach to designing isolation systems focuses primarily on the proper-
ties of those compliant mounts without much regard to the geometry of the complete system, that is, the locations
and/or orientations of the mounts on the isolated device. In cases where the source of the vibrations is well known
(location, amplitude, frequency content) and/or when the residual motion atspecific points on the isolated device are
of critical importance, we should expect (see, for example, (Ashrafiuon 1993)) that mount locations and orientations
will have a substantial effect on the effectiveness of the isolation.

To investigate this, we define a simplified vibration isolation problem, based on an existing laboratory setup (Fig-
ure 17). The setup consists of a rigid, rectangular optical table (approximately 48” x 36” x 8.5”, 815 lb.) mounted on
3 vibration isolation mounts. This system is in turn resting on a massive seismic base (approximately 70” x 48” x 12”,
4085 lb.), itself isolated from floor borne vibrations by 4 air bags. The isolator mounts supporting the optical table are
steel coil springs with stiffness of about 3970 lb/in in the axial direction and 1570 lb/in in the transverse (shear) direc-
tions. The bottom of the optical table and the top of the seismic base feature identical 8x6 arrays of mounting holes
for those springs. The 6 rigid body natural frequencies of the seismic base on its air bags range from about 1.1 Hz to
2.5 Hz. Both the base and the optical table can be regarded as rigid bodies below a few hundred Hertz, where flexible
modes appear.

A 3-dimensional, rigid body dynamics code was developed in MATLAB (The Mathworks 1992) to model this
system. The air bags and steel springs are modeled as 3-dimensional springs with viscous damping. Their bending
and torsional stiffnesses are neglected. The seismic base and optical table are modeled as concentrated masses and
inertias. The mass properties of all parts of the system were either measured or evaluated from CAD models. The
stiffness and damping of the air bags and steel springs were obtained from the manufacturers and further refined
through parameter estimation based on measured natural frequencies and modal damping.

To simulate a perturbation, the seismic base is excited at its front right corner by an electromagnetic shaker (Fig.
17) with a sinusoidal input at a fixed frequency of 50 Hz. We assume that the vertical component of velocity at the
front left corner of the optical table (Fig. 17) is the critical design criterion (because a sensitive instrument is mounted
there for example). These locations introduce asymmetry in the problem and lead to the nonintuitive optimal solu-
tions for the isolator locations.

The design problem consists of selecting locations for the 3 spring isolators on the 6x8 grid of mounting holes in
a way that minimizes transmission of the perturbation to the specified point on the optical table. The 6 discrete design
variables are the x and y locations of the 3 springs. The transmission T (µin/sec.-lb.) is expressed as the vertical veloc-
ity at the given point of the optical table per unit load amplitude at the excitation point. We define a baseline design
where the 3 springs are arranged as symmetrically as possible around the center of the table (Fig 18) which has a pre-
dicted transmission of 21.22µin/sec.-lb. at 50 Hz.

Since the optimized designs will be tested in the laboratory, a number of practical constraints apply:
• Due to the presence of lifters, the 4 holes at the corners of the grid cannot be used.
• The 3 springs cannot be colinear and only one spring is allowed per grid location.
• To avoid generating designs that would be too unstable, the first natural frequency of the optical table on its

mounts is constrained to be more than 4 Hz. This also ensures decoupling between the modes of the seismic
base/airbags system and those of the optical table/springs system.

• Because the springs are simply resting in end plates attached to the mounting holes, the static load on each spring
must be compressive.

• There is a limit to the amount of weight a spring can support before being compressed to its solid length. An
upper limit is imposed on the static deflection of each spring.

Optimization Results. Because of the discreteness of the problem, the optimization was performed with the
genetic algorithm (GA) available in SGOPT within DAKOTA. The MATLAB analysis code was coupled to the opti-
mizer through simple UNIX scripts. No input or output filters were used; instead, the MATLAB code was designed to
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exchange input and output directly in the DAKOTA-compatible format. The design variables (locations of 3 springs)
are coded into a “chromosome” composed of 6 integer-valued “genes” that define the grid indices for x and y coordi-
nates of the first, second and third spring, i.e. [x1, y1, x2, y2, x3, y3]. Any x gene can take integer values between 1
and 6 while y genes take values between 1 and 8. The size of the design space (total number of conceivable designs)
is approximately 100,000.

Since the GA in DAKOTA cannot explicitly handle constraints, penalty functions are implemented within the
MATLAB analysis code. Both step and quadratic penalty functions were used for this problem. In the step penalty,
any amount of constraint violation produces a fixed amount of penalty, subtracted from the fitness (Leriche 1994).
This is done to ensure convergence to a feasible design, which may not occur when using only progressive penalty
functions. Because GA’s are zero-order search techniques, the discontinuities this strategy creates are perfectly
acceptable. In addition to the step penalties, the “quantifiable” constraint violations (4Hz frequency limit, spring
static loads and deflections) produce penalties proportional to the square of the violation (constraints are first normal-
ized).

Out of several options and adjustments available in DAKOTA, the following combination was chosen:
• population size: 10; crossover probability: 0.8; mutation probability: 0.1; number of generations: 15.
• ranking technique for selection: the probability of selection of an individual is proportional to its rank.
• moderate selection pressure: the probability of selection of the best individual is twice that of the worst.
• uniform mutation: a mutated gene takes a random integer value, uniformly distributed from 1 to 6 for x genes and

1 and 8 for y genes.
• elitist strategy: the best individual of the current generation is duplicated into the next generation.

With these adjustments, each search evaluates less than 150 designs, or 1.5% of the design space (the GA keeps
track of previously analysed designs, so the actual number of function evaluations averages around 105). In order to
get some idea of the reliability of the search, we performed series of 10 runs and compare the results to a series of 10
random searches of 105 analyses each. The result from each random search is the best feasible design found. Typical
results are shown in Fig. 19. The random searches generate some good designs and many mediocre ones. In contrast,
all 10 designs obtained from the GA runs are feasible and represent significant improvements from the baseline case.
However, the GA occasionally “converges” to a relatively poor design (T=3.23 in Fig. 19). This shows that more reli-
able results can be obtained by running a small number of short searches (if the probability that the best found design
is “poor” is 0.1 for a one run, then it is only 0.01 for the best of 2 runs, 0.001 for the best of 3, etc.). Because GA’s are
most efficient in the initial phases of the search and further “convergence” is usually slow, this approach is preferable
to running a single longer search (Leriche 1994).

The “optimal” designs are also very different from each other, as illustrated in Fig. 18 where a few configurations
are shown with their predicted transmissibility. This is a strength of genetic algorithms: final designs are random
“quasi-optimal” configurations that tend to have similar values of the objective function but distinct design features;
the final choice rests in the hands of the designer. However, in this case, the various designs of Fig. 18 resulted from
distinct runs of the GA and were not present together in final populations. In fact, the final populations usually con-
tained only one or two “good” designs, with most others infeasible. This is the result of 1.) significant multimodality,
as evidenced by the large differences between distinct “optimal” designs (Fig. 18), 2.) a highly constrained design
space (12 constraints), and 3.) a relatively small design space (100,000 designs).

This creates small “pockets” of feasible designs isolated from each other in the design space. Because the design
space is small (coarse 6x8 grid) and feasible designs are rare (Monte Carlo simulations show that only about 13% of
random designs are feasible), each “pocket” tends to contain only a few designs and the probability that genetic oper-
ators will generate feasible designs is small (even by mating two feasible designs). Also, since designs in distinct
pockets are very different, there is no reason to expect that combining features of those different designs would create
better or even feasible designs (the concept of niches (Goldberg, 1989) was developed to handle this problem but we
think that in this case, the number of feasible designs in each niche is too small to allow exploitation by GA opera-
tors). This means that most of the search has to take place in the infeasible design space and explains the presence of
few feasible designs in each population.

Continuous optimization was also tested on this problem. DOT’s modified method of feasible directions was
used within the DAKOTA framework to solve the constrained continuous problem (ignoring the grid), followed by
rounding of the optimal design to neighboring discrete solutions. An optimal solution was found at (2.22, 1.56, 2.49,
4.94, 4.29, 3.79) with a transmission T=0.20µin/sec.-lb. Rounding to the closest neighbor gives (2,2,2,5,4,4), which
is infeasible. If we consider all immediate neighbors of the continuous solution (Fig. 20), we find that out of the 64
designs, only 12 are feasible and the best of these has T=3.67, 22 times worse than design A of Figure 18.
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Figure 21 shows frequency response functions (FRF’s) for the designs of Fig. 18. These FRF’s show that the GA
is seeking out an anti-resonance condition in the vicinity of 50 Hz. Anti-resonance is achieved by combining mode
shapes so as to cancel out vibration at a point. The fact that the anti-resonant peaks miss the 50Hz target slightly is
due to the discrete isolator locations; and in fact, the continuous solution of T=0.20µin/sec.-lb. places the anti-reso-
nant peak directly at 50Hz (not shown). Another important fact to observe is that there is significant broad band
improvement in the transmissibilities of the optimized designs compared to the baseline design. That is, the improve-
ments are not confined only to a 50 Hz input; but rather there are significant decreases in transmission through a
broad input range. This is an especially important observation, since it shows that the performance is not seriously
degraded for off-nominal excitation inputs and that more sophisticated objective function formulations for minimiz-
ing broad band transmission are probably unnecessary.

Finally, the designs of Fig. 18 were tested in the laboratory. The results of those tests are shown in Fig. 22 and
compared to analytical predictions. The figure shows the nominal value of the transmissibility (objective function in
the optimizations) and the predicted range of transmissibilities with ±5% uncertainties in the spring constants. This
analytical range is determined with Monte Carlo simulations in which each spring constant is chosen randomly
within the ±5% uncertainty range. Note that, in most cases, the experimental value falls within the analytical range.
The transmissibilities of the optimized designs were predicted between 32 and 70 times smaller than that of the base-
line design. The actual ratios achieved in the lab range from 7 to 46. They all represent significant improvements from
the original design.

Technical Lessons Learned. The application of genetic algorithms to this discrete, multi-modal, heavily con-
strained problem led to the following observations:
• Applying constraints through penalty functions in a GA problem is a delicate operation. A balance must be

achieved between the desire to obtain a feasible final design and the need to allow the search to cross infeasible
regions of the design space. Surprisingly little research has been devoted to this aspect. One reason is that, in
research GA’s, problem-specific repair operators are often introduced to enforce constraints. This approach is
more efficient but is highly application-specific and cannot be included in general purpose codes like DAKOTA.

• The combination of multi-modality, large number of constraints, and limited design options (coarse discrete grid
in this case) makes the problem difficult to handle, even for a zero-order random search technique like the GA.

• The classical argument that a GA provides multiple design alternatives in its final population does not hold in
heavily constrained discrete problems with small design spaces. Instead, each run provides only one or two
acceptable designs.

• Multiple design options and improved reliability of the search can be obtained by running a few short searches,
rather than a single, long search.

• Continuous optimization followed by rounding to neighboring discrete solutions does not generally lead to an
optimal design. For problems with coarse discrete grids, heavily constrained design space, and rapidly varying
objective function, this approach leads to few, relatively poor feasible designs.

Conclusions

Object-oriented software design has been shown to be an effective tool for the generic integration of optimization
techniques with broad classes of simulation codes. Three applications involved optimizing expensive, nonsmooth
engineering simulations with nonlinear programming, and one application demonstrated the solution of a discrete
design problem with constraints via genetic algorithm. In several of these applications, the DAKOTA system was
used for easy comparison of different optimization algorithms which enabled illuminating assessments of relative
performance.

In the engineering simulation applications, nonsmoothness in the design space has been shown to be a recurring
problem when applying gradient-based optimization techniques to “black box” transient simulation codes. This
ultimately must be addressed with attention to nonsmoothness reductions in the analyses and with employment of
robust algorithms in the optimization. The high computational expense of repeated analyses is the other crucial,
recurring difficulty. This must be addressed with attention to modeling simplifications, analysis code convergence
tolerances, efficient time stop strategies for transient simulations, function approximation strategies, and robust and
efficient optimization algorithms which make the most of each function evaluation and which are successful the first
time (thereby avoiding multiple executions and tweaking of parameters before achieving convergence).

In the vibration isolation application, the challenges were quite different. Instead of nonsmoothness and extreme
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computational expense, discrete design variables and a highly constrained design space were the primary challenges.
Genetic algorithms have shown promise as effective techniques for these types of problems. However, while GA’s can
be very robust techniques, the number of function evaluations they require can be prohibitive for applications
involving expensive engineering simulations.

Thus, research in this paper has focused on how generic interfacing of iteration with simulation is performed,
what application-specific techniques are useful in enabling reliable and efficient optimization studies, and what
algorithmic strengths and weaknesses can be observed when interfacing existing optimization techniques with
complex engineering simulations. It has been shown that existing techniques have limitations in their effectiveness
when dealing with the combined challenges of high computational expense and nonsmooth, nonconvex design
spaces. These observations have uncovered research needs which are directing advanced strategy development efforts
in fundamental algorithms, algorithm hybridization, function approximation, parallel processing, and automatic
differentiation. Progress in these areas is presented in a separate paper. The overall goal of this collection of research
activities is to develop a broadly useful optimization capability with the flexibility and extensibility to easily
accommodate broad classes of optimizers, a wide disciplinary range of simulation capabilities, and advanced
strategies which seek to enhance robustness and efficiency beyond that which is currently available.
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Table 1: Weight minimizations subject to end impact, side impact, and thermal constraints.

Initial Design Final Design

Weight
(lbs.)

Endσyy

(psi)
Sideσyy

(psi)

Max.
Temp.
(OC)

Weight
(lbs.)

Endσyy

(psi)
Sideσyy

(psi)

Max.
Temp.
(OC)

End-on 181.6 19012. N/A N/A 40.40 22976. N/A N/A

Thermal 153.9 N/A N/A 153.4 62.19 N/A N/A 232.6

Combined 181.6 19012. 4005. 162.6 93.9823012. 6614. 231.7

Table 2: Design variable values for computed optima.

x1 x2 x3 x4 x5 x6 Optimal Shape

End-on .466 .710 .104 1.13 10.5 1.13 Long & Thin

Thermal 1.68 .100 1.04 1.15 .805 .921 Short & Fat

Combined 2.22 .909 .100 .647 10.3 .107 Compromise

Table 3: Optimization results with CG optimizers for EPSIT = 10-2, EPSIT2 = 10-4

Optimizer FDSS
Initial
Values
(r, x)

Initial
Obj. Fn.

Funct.
Evals.

Final Values
(r, x)

Final
Obj. Fn.

OPT++ P.-R. CG 4% (1.4, 0.5) 7.2045 34* (1.5812, 0.75016) 2.8293

OPT++ P.-R. CG 1% (1.4, 0.5) 7.2045 100* (1.6038, 0.76547) 2.5956

OPT++ P.-R. CG 0.1% (1.4, 0.5) 7.2045 73 (1.6086, 0.76895) 2.5546

OPT++ P.-R. CG 0.01% (1.4, 0.5) 7.2045 28* (1.6016, 0.57370) 4.9477

OPT++ P.-R. CG 1% (1.0, 1.0) 86.954 31* (1.9321, 0.62026) 5.9543

OPT++ P.-R. CG 1% (1.2, 0.9) 34.831 106 (2.1044, 0.50665) 6.9526

DOT F.-R. CG 1% (1.4, 0.5) 7.2045 34 (1.6435, 0.77498) 2.5973

DOT F.-R. CG 1% (1.0, 1.0) 86.954 40 (1.6374, 0.77591) 2.5362

DOT F.-R. CG 1% (1.2, 0.9) 34.831 38 (1.6475, 0.77393) 2.6217
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Table 4: Preliminary Optimization Results

Initial Final

Slot Length, Ls (cm) 5.0 11.3

Slot Height, Hs (cm) 1.0 0.25*

Slot Entrance Angle,α (degrees) 53.0 60.0*

Chamber Length, Lc (cm) 10.9 20.0*

Chamber Height, Hc (cm) 4.3 9.9

Feed-Channel Height, Hf (cm) 15.0 14.3

Non-uniformity (%) 16.5 3.2

Average Residence Time† 253.6 215.2

Maximum Pressure† 42.3 1832.

* indicates active bound constraint
† indicates nondimensional quantity
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A) ParamStudy: for mapping response variations with respect to model parameters.
B) Optimizer : for numerical optimization studies.
C) Nondeterministic: for assessing the effect of modeling uncertainties on responses.



18

Figure 3. Typical transportation cask.

o-ring region

Figure 4. Axisymmetric finite element model for end-on impact showing the 6
design variables which define overpack layer thicknesses.

Steel plate
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Figure 5. Finite element model for side-on impact showing radial thickness layers.

Figure 6. Smoothing of stress constraint through modeling improvements.
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a refined model
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a refined model with contact
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Figure 7. Smoothing of temperature constraint through modeling improvements.
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Figure 8. Comparison of computed optimal shapes with experimental prototype design.
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Figure 9. Finite element model and typical temperature distribution (oF).
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Figure 10. Temperature histories of critical stronglink and weaklink nodes.
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Figure 11. Objective function variation with respect to fire center location (x) for r=1.89.
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Figure 12. Objective function variation with respect to fire radius (r) for x=0.8.
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Figure 13. Detail of Figure 11 showing effect of QTRAN convergence tolerances on design space nonsmoothness.

   o EPSIT = 10.,   EPSIT2 = 0.1
   x EPSIT = 10-2, EPSIT2 = 10-4
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.

Figure 14. Schematic of a chamber-slot die.
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Figure 15. Initial geometry.
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Z

Figure 16. Final optimized geometry.

Figure 17. Vibration isolation testbed hardware.
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Baseline

T=21.22

Design A Design B Design C

T=0.302 T=0.340 T=0.410

Design D Design E Design F

T=0.412 T=0.465 T=0.489

Design G Design H Design I

T=0.593 T=0.594 T=0.668

Figure 18. Spring locations and transmissibilities of baseline and 9 optimized designs.
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Figure 19. Results from 10 GA runs compared to 10 random searches for the same number of analyses.

10 Runs - 105 Function Evaluations Each

Continuous solution, T=0.20

Closest discrete solution, infeasible

Immediate neighbors, best T=3.67

Figure 20. Comparison of continuous optimum and nearby discrete solutions.
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Figure 21. Frequency response functions for optimized designs.
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Figure 22. Comparison of analytical and experimental transmissibilities of baseline and optimized designs.


